~ AD=AD40 587

— S ———— . ——

IBM THOMAS J WATSON RESEARCH CENTER YORKTOWN HEIGHTS N Y F/6 1271

NUMERICAL METHODS FOR STIFF NONLINEAR AND QUADRATIC DIFFERENTIA==ETC (U)
APR 77 W LINIGER F44620-75-C=0058

UNCLASSIFIED AFOSR=TR=77=0642 NL

END
DATE
FILMEL
=l




= e 2s
L8 ¢

L oy

i

I flis nee




- -

AFOSR - TR- 77~ (64 2

7

NUMERICAL METHODS FOR STIFF NONLINEAR AND
QUADRATIC DIFFERENTIAL EQUATIONS

W. Liniger

] International Business Machines Corporation

T. J. Watson Research Center

ADAG4058

P.0O. Box 218

Yorktown Heights, N.Y. 10598

25 April, 1977

Final Scientific Report for Period 1 March 1975-28 February 1977

Contract No. F44620-75-C-0058

Approved for public release; distribution unlimited \fo

Sponsored by the Air Force Office of Scientific Research

~—
——————————

AFSC, United States Air Force

00C FuE Copy

AD No.




i
3
%
|
i
§
|
1
4

AIR FORCE OFFICE or SCthxiflc RLhEARCH (AFSC)
ROTICE oF TRANSMITTAL 70 DDC

is t'gn:icnl preport has peen rcviowod and i8
for public releaso 1AW AFR 190-12 (70) -+
unlimimed.

m
4 il

"oV
L}ut;tLuxxon is

Ae Do BLOSE
1uchnicnl rmation officer

-
H

info




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data lnu-rm!) F
! READ INSTRUCTIONS 1 i
REPORT DOCUMENTATION PAGE e e
1. REPCRT NUMBER fv’ / S '“"—'“Vj: GGVT ACCESsION r‘.,: 5 PECIPIENT'S CATALOG NIUMBER
7, f i
/4 Amsax- M- 77> ,4(,4 2 .
Q\. TITLE (LIIILI \ub‘ el wous— - . 5' TYPE x)F'RF,F‘\')‘RT'& PERIOD COVERED
/ — Final Scientific Report for
[ (’ Numerical Methods for Stiff Nonlinear and Quad- / |period March 1,1975-Feb.28,197%7
e ratic Differential Equations % PERFORMING ORG. REFGRT NUMBER |
7 AuTHoms) = 8 CONTRACT OR GRANT NUMBER(s)
. e = 14 7 g N
Wotner® Liniger / /<1 F44620-75-C-0058 + '
i bl \ - — - - o
2 e td
9. PERFORMING ORGANIZATION NAME AND ADDRESS 5 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORR UNIT WUMBE RS
International Business Machines Corporation . ,’/ -i
T.J. Watson Research Center * j(« 9749 p3
P.0. Box 218, Yorktown Heights, N, Y, 10598 = e
1+, CONTROLLING OFFICE NAME AND ADDRESS 412 REPORT DATE |
. 1]
Air Force Office of Scientific Research // Apr 77/ _ i
(NM) Bldg. 410,Bolling AFB, D.C. 20332 13. NULMBER OF PAGES
ol
T4 MONITORING ACENCY NAME & ADORESS(If differant from Controfling Office) | 15. SECURITY CLASS. (of thits roji o
; 2 B Unclassified X
SRR _’ 158, DECLASSIFIC (TION DOWNGRAGING
L SCHEDULE
E
75 D THIBUTION STATEMENT (of this Report) RiE - i
-
Approved for public release, distribution unlimited
a -
s ey o g /
f / ‘ x /
N7 L onl s 7 &0 7
:_‘-7 CISTRIBUTION STrATEMgNT (of the abstract entered in Block 20, if different from R"P‘"”_. e T T
i
18 SUFPLEMENTARY NOTES Ty !
~ |
Covers period from March 1, 1975, through February 28, 1977 :
3
?“:?V WORDS (Continue on reverse stde :l nec c-tsnry and identifv by block number) R T
Nonlinear and linear stability of multistep formulas. Special
highly accurate, A-stable methods. Fractional linear schemes for quadratic
systems. Rotational solutions of the Josephson phase equation. 1
/ = e s 4 ﬂ
s 20 ABSTRACT (Continue on reverse side If necessary and identify by block numbe )
Tht e fontract ¥44620-75=C~ S
> i : 17 C-0058 was concerned with research in nonlinear and linear
i ( y of multistep methods, special high-order A-stable methods, fractional
inear difference schemes adei ey X z ;
by e ] chemes for quadratic differential equations, and rotational sod
utions o Jos ; ase eduati y & ;
tained i t’:‘ ‘;:"’rh“"“ phase equations. This report summarizes the results ob-
ained in each o vge f yeeswss it N s ; ;
g : ch « these four areas, and gives references to the full accounts ap-
pearing in various research p.lpvr:;.'
A
DD ;’::M‘, ‘473 EQITION OF ' NOV 65 15 OBSOLETE f
& Unclassified A

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) |

. . = -




This is the final technical report covering the research carried out
under this contract from March 1, 1975, through February 28, 1977. The

work may be divided into these four categories:
I. Nonlinear and linear stability of multistep formulas,
X Special high~order A-stable methods, .

III. Fractional linear difference schemes for systems of quadratic

differential equations, and

IV. Rotational solutions of the Josephson phase (Sine-Gordon-)

equation.

Here we summarize our results obtained in these areas. A full
account is given in the research papers listed in Section V and referred
to hereafter by letters in brackets. Some of these papers are enclosed
with this report and others are in preparation. Numbers in brackets refer

to the list of references (Section VI).




I. NONLINEAR AND LINEAR STABILITY OF MULTISfEP FORMULAS
‘

A. Nonlinear Input-output Stability of Conventional Multistep Formulas
[a]

If a linear multistep formula (LMF) is applied to a nonlipear system
i

of differential equations, y = f(y), ther the numerical solutic¢n {xn},

'

n=20,1,..., is defined by a nonlinear difference equation, i

N(xn) = 0; ' (1)

here X, approximates ¥, y(tn), where y(c) is an exact solution of the

differential system, tn nhy h > 0, o= 0, L,:.., and

k k
N(xn) = I a,x - hZ

i 3%+ ﬁjf(xn+j) . (2)

3=0

If by dn = —N(yn) we denote the local truncation error, then the global
error, e = xn—yn, satisfies M(en) = dn, where M(en) = N(yn+en)—N(yn). The

difference equation (1) is said to be input-output stable if

ll{en}ll < K ll{dn}ll in some appropriate norm ||+||, where K is a constant

independent of n. In order for the concept of input-output stability to
be relevant for stiff systems of differential equations, the step-size h
must be thought of as fixed and finite.

We have proved several theorems giving sufficient conditions for
input-output stability of difference equations for various types of non-
linearities, notably for f's satisfying the monotonicity(dissipativity)

condition
< f(yte) - f(y), e > < u|e|2 K3}

for all y and e in some appropriate set and for some u < 0; here <,> {is an




arbitrary scalar product and le]z = < e,e >, The condition (3) implies

-

stability (dissipation) of the differential system. We have, for example;

proved the following result:

k
Theorem 1: Consider the well-known polynomials p(f) = I ujcj,
k 3=
a(c) = E SjCJ associated with the LMF and let I denote its ''root-locus
j=0
curve", i.e., I' = {q] q = q(z), q(¥) = p(8)/0(c), |t| = 1}. Then, if the

roots cj of o(g) satisfy |oj| <1l, J=1,...,k, and if hy < m, where m is

the deepest incursion of I' into the left half of the gq-plane

(m = lan Req(z)), then we have input-output stability both in the 22- and
g|=1

in the maximum norm.

The second condition of Theorem 1 may be interpreted by saying that
the differential system has an amount of dissipation, measured by hyu,
sufficient to offset the lack of A-stability [1] of the LMF, measured by m.
Other input-output stability theorems have been obtained for:

. nonlinearities f which are monotone only for |e| > B > 0,

B sufficiently large,

. monotone f's with sufficiently large negative y,

y nonlinearities f which are gradients of concave, scalar functions
(implying that the Jacobian matrix 3f/3y is symmetric and its
spectrum is real),

. nonlinearities f satisfying a Lipschitz condition, and

’ nénlinear systems composed of loosely coupled subsystems, each

of which falls into one of the previously mentioned categories.

" —— |




B. Nonlinear Stability of Formulas with Second Derivatives [b]

The nonlinear input-output stability analysis for conventional LMF
described in the preceding paragraph has been extended to the LMF involving

second derivatives:

k k k

I a.x h T 8 .

L 8% + h DML, = 0. 4
§=0 jn §=0 3 ok i=0YJ atd (4

+j

The results apply to stable nonlinear systems X = f(x) satisfying the

monotonicity conditions

h < f(xte) - £(x), e > < —ullc|2, (pl > 0)
2 2
h™ < g(xte) - g(x), e > 2 u,fel”, (v, > 0)
< f(xte) - f(x), g(xte) - g(x) > s 0,

where g = f f and f is the Jacobian matrix af /8x.

First, simple sufficient conditions were derived for input-output
stability of the nonlinear difference operator associated with the dif-
ferential system and the integration formula. Rewrite (4) in the form

k k ) k
L = h & b + i & ¥ . =0 5
j=oajx“'j j=0 40 J=ocj "= oy

-5 By * Py

K s 3 o= Oglgenaly N ik, REL, ooy and
k k
b

where a, = a

j

’ Cj = Yk-j

i

¢z correspond to p (%),
O -

j

8.2°, () = T b zj, and t(z) =
j=0 j=0 j
k
o(g), and t(z) = I yjcj, respectively. Then the above mentioned stability
j=0

let r(z) =

oo

condition is that




|

-1
m max |&—-l } {Imax —g—-—l - B& <1, (6)

12 z|=1 c(z z|=1 t(z’h)

where A and B are free positive parameters which are at one's disposal
and which are to be suitably chosen.

Second, the criterion (6) was applied to the A-stable formulas of
Enright [2] with k=1, p=3 and with k=2, p=4, respectively. A computer
search procedure was used to find values of A,B for which (6) is satisfied
for various amounts of dissipation, i.e., various values of “1 and My For
example, Enright's formula with k=1, p=3,

i |
6

h ; .
X - X -3 (2xn+ X - % =0, (7)

n n-1 n—l)

was found to be input-output stable with a moderate amount of dissipation:

C- Liapunov-Stability of Conventional Multistep Formulas [c]

If {xn} and {xn+zn} are any two solutions of the difference equation

(1), then {zn} satisfies the variational difference equation

N(xn) - N(xn+zn) = 0. The LMF giving rise to this variational equation is

said to be Liapunov-stable if, in some appropriate norm ||:|| defined by a
Liapunov function, ||{zn||} < o, It is said to be (G,u)-stable in the sense
of Dahlquist if for any f satisfying the monotonicity condition (3) it is

Liapunov-stable with respect to a norm defined by a positive definite quad-

ratic vector form [ , where Gt(gij) is a positive

81y < Zntk-1' Zntk-j




definite real symmetric kxk-matrix. The LMF is said to be G-stable if it is
(G,0)-stable. A-stability is necessary for its non-linear analogue,
G-stability.
By a simple, explicit construction of a quadratic Liapunov function
we proved the following results:
Theorem 2: Any member of the four-parameter family of all three-step
(k = 3) LMF which are second-order accurate (p = 2) is G-stable if and only
if it is A-stable.
¢ Any three-step (k = 3), third-order (p = 3) LMF whose polynomial
o(z) satisfies assumption 1 of Theorem 1, as well as certain
other, easily verifiable algebraic constraints between its co-
efficients, is (G,u)-stable for any u below an explicitly given, ~
negative bound which depends on the choice of the formula. For
example, the formula

F25£ ) =0,

ol Nk o PR R T Mee

2+46xn+3—h(fn—fn+

a '"'neighbor'" of the three-step backward differentiation formula,
is (G,u)-stable for u <-36/31.
A survey of work on the stability (mostly linear) and accuracy of
numerical methods for stiff differential equation [d] was presented by
the principal investigator at the workshop on stiff differential equations
held at the Air Force Weapons Laboratory at Kirtland Air Force Base, N.M.,
on May 6 and 7, 1976.

A survey of recent work on nonlinear stability of integration methods

is in preparation [e].
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EE, SPECIAL HIGH-ORDER A-STABLE METHODS
A. Averaging [f]
High-order, A-stable numerical solutions to stiff systems of differ-

ential equations may be generated by a) calculating several A-stable solu-

tions of order of accuracy one or two, each of which is produced by a parti-

cular member of a family of LMF depending on instrinsic parameters, and b)

"weighted average" (linear combination) of these solu-

forming a suitable
tions. The recipe for forming high-order averages of low-order LMF solu-

tions is found by considering an asymptotic expansion of the global trun-

cation error as a function of the formula parameters.

. An efficient procedure was developed for the systematic compu-
tation, to high orders in h, of an asymptotic expansion of the
global truncation error of an LMF. This technique was applied
for finding, to 0(h6), the error expansion for the four-parameter
class of all three-step, second-order LMF. From a two-parameter
subclass of this class, A-stable (in fact, G-stable) methods
of orders 4,5, and 6 have been derived which require the aver-
ging of as few as 2, 3, and 4 IMF solutions, respectively. These
methods have been programmed in APL and successfully tested on
linear and mildly non-linear stiff systems. The success of the
numerical tests hinged partly on the use of a suitable starting

procedure we developed for the step-by-step solution of the dif-
férence equations.

B. A-stable Integration Formulas with Second Derivatives [g]

Whereas for conventional linear multistep formulas (LMF) A-stability




i

is incompatible with orders of accuracy p > 2 [1], there do exist A-stable
IMF involving second derivatives, i.e., formulas of the type (4) of as
high an order of accuracy as four [2,3]. A criterion was developed for
testing A-stability of formulas of class (1), which also served as a basis
for the a priori construction of a special class of A-stable formulas of

. %
this type. This criterion states that if i) the formula (4) is Aw—stable .

k
i.e., the roots T of the polynomial t(g) = I yjc
3=0

J satisfy

IT <1, i=1,...,k; and ii) under the two-valued map ¢ - q, defined by the

"
characteristic equation
p(2) - qo(2) + ot (2) = 0, (8)

the image set TI' of the unit-circle of the f-plane (sometimes referred to
as the root-locus curve) satisfies I' ¢ {q|Req = 0}, then the formula (4)
is A-stable. This criterion is based on an earlier result of ours [4] and
generalizes a criterion valid for conventional LMF [S5], i.e., formulas with
t(g) = 0. It can be implemented efficiently by using the algorithms of
Routh [6] and those described by Duffin [7].

The criterion mentioned above has been used to a priori construct
the three-parameter family of all A-stable two-step (k = 2) formulas of

type (1)f which have p = 4. The formulas of Enright [2] and those proposed

by Jackson and Kenue [8] are members of this family.

The present definition of A -stability is analogous to that for con-
ventional LMF given in [4].

Except possibly for some marginally A-stable ones.

_ —
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C. Optimization of A-stable LMF with Respect to a Global Accuracy Criterion

If the formula (1) is applied to the test equation

i (g]
’.
X = Ax, X = const, (9)

the fundamental solutions of the resulting difference equation are of the

g n . . .

form {¢ , n = 0,1,2,...} where ¢ is any one of the solutions of the character-
istic equation (8) with q = hA, provided these roots are distinct. If one

of them satisfies ¢ = cq. f8e ¢ EF

2
plc) - logt o) + (logt) T (g) = O, (10)
then, for this ¢z, {Cn} is an exact discrete solution of (9), i.e.,

RS L x(tn), I nh, where x(t) = e)\t is the exact fundamental solu-

.

tion of the differential equation (9). Then, as far as this "principal"
root is concerned, the formula (4) is exponentially fitted [9, 10] at
q = log ¢.

Let R(t) denote the left side of (10). For any given g, |R(:)],

is a measure of how far the formula is from being exponentially fitted.

1!
2
Thus, M = / [R(z)]"dg is an t,-measure of global accuracy of rhe formula
o
(4) with respect to the family of test problems x = Ax, -= < A s 0. The
measure M can be computed explicitly as a function of the formula paramcters.
For the particular three-parameter class of formulas defined under
I1.B the following problem was solved: Optimize the formula with respect

to M over all three parameters, subject to the A-stability constraints. The

unique optimal formula was found to be

il g i — G - d ———— W




10

= o g . c .
1236x“ 241620xn+1+h40384xn+2 h ( 618xn+119574xu+1+120192xn+ )

2

2
+h (103xn-20135xn+1+20032x ) = 0.

n+2

II1. FRACTIONAL LINEAR DIFFERENCE SCHEMES FOR SYSTEMS OF QUADRATIC
DIFFERENTIAL EQUATIONS [h,i,j]

We are concerned with the numerical solution of quadratic systems
of ordinary differential equations
Fak i e B

ia i
B e i i bax S (el

af
by quadratic systems of difference schemes

RIS 3 o S i g ia i
(—raeu (£) + sa)u (t+h) = taeu (t)u (t) + u u (£) + v
Here, a and B are summed from 1 to n, and i ranges from 1 to n.

In vector notation the initial value problems for these equations are
X = x*x + Bx + ¢, x(0) = &, (11)
(-Rlu(t)] + S)u(t+h) = Tlu(t)Ju(t) + Uu(t) + v,u(0) = £.(12)

k n
In the above, x, ¢, &, u and v are vectors in R ; B, S and U are nxn
3

jk); and R[u] and

matrices; * is multiplication in the algebra‘?(*) = (a
T[u] are nxn matrices which are linear functions of u.

Wheh T[u] = 0, the scheme (12) can be written as
alt4h) = (-R{ule)] + 9 " 1toule) + v, (13)

which we call a fractional linear scheme. We have obtained the following

results:

1) 1If the scheme (13) converges as h +» 0 for all &, then it must

converge to a quadratic system (11).
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2) For every quadratic system (11), there exists a fractional linear
scheme (13) which approximates (11) to second order and which converges to
(11) as h + 0.

3) If the coefficients of the scheme (13) satisfy

R lale = £ VM) (@RI IR Nar, (14)
d .
S(h) = V(h) (15)
U(h) = -R(W) [V(h)z(h)] + I, (16)
v(h) = V(h)z(h), (17) *

where z = z(t) and V = V(t) are defined by
z = 2%2 + Bz + ¢, z(0) = 0, .
C * *
V = -V(B+2R [z]), V(0) = I, (R [z]x = z*x),

then (13) is a second order accurate convergent scheme for (11).
4) The scheme (13) is the exact scheme for (11) if and only it the
scheme coefficients satisfy (14)-(17) and the system (11) is a P-system.

That is, the solution of (11) is given by

x(€,8) = (-R() [E1V(E)HV(£)) T ((-R(0) [V(E)z(£) +D)E + V(D)2 (¢)).
5) If the coefficients of (13) satisfy (14)-(17) to second order
in h, then (13) is also a second order accurate convergent scheme for (11).

6) The matrix Riccati equation
X = XAX + BX + XC + D,

which is of great practical importance, is a P-system and therefore has

a fractional linear exact scheme. Further, this exact scheme can be con-

structed by solving a linear system of ordinary differential equations




EREy:

]
d
L
i
3

on the interval [0,h].

These results give a rather complete analytic theory of fractional
linear difference schemes for quadratic systems. To test the computational
effectiveness of these schemes, two computer codes are being developed im-
plementing these schemes: one for two-dimensional systems, and one for

arbitrary matrix Riccati equations.

LV. ROTATIONAL SOLUTIONS OF THE JOSEPHSON PHASE (SINE-GORDON) EQUATION [k ,? ]

A, Problem Formulation

A Josephson junction consists of two superconductors separated by
an extremely thin dielectric barrier. The order parameter ¢ (phase dif-
ference between the wave functions of the two superconductors) satisfies
the Josephson equations [11]. In a mathematical limit situation where ¢
depends only on one space dimension and on time, Josephson's fundamental
equations combined with Maxwell's equations give rise to a nonlinear damped
wave equation for ¢ referred to as the Josephson phase equation or the

*
"sine-Gordon" equation. In dimensionless form this equation is

2 2
3¢ 3¢ 3

AP = P 5 -0 5% = Kk sin ¢. (18)
9X at

For the purpose of describing the Jecsephson ac-effect, one is seeking
rotational solutions of (18); i.e., solutions of the form ¢ = wt + Y, where

Yy is periodic in t of period (2n/w), for some w.

The dimensionless variables are those introduced in [12], except that
distances are measured in units of the L/n where L is the junction length,
rather than in units of the Josephson penetration depth )\
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In a situation where a constant voltage Ve is applied to one end of
the junction (x=0), the equation (18) is to be solved subject to the

boundary conditions [12]

¢|x=0 = wt 5 w = Ve
¢ ang
axl X=T He’

where He denotes an externally applied magnetic field. This case is re-
ferred to as the '"voltage-driven case." Note that k = Lz/(nAJ)2 where XJ
is the Josephson penetration depth, and the o of [12] equals (ﬂAJ/L) times

the present 0. The total current I drawn by the junction is the time average

(over a period) of the ac total current I(t) defined by the additional con-

straint

9 -9 -
X |x=ﬂ X |x=0 I(t).

The nonlinear current-voltage characteristic of the junction is then given
by I = I(w).

If the junction is driven by a constant total imposed current Ie,
one is looking for rotational solutions of (18) with unknown w satisfying

the boundary conditions

3¢ "

X |x-O (He i Ie)’
¢ s

x |x-n He'

Then the voltage V across the junction at x = 0 is the time average of the

ac voltage V(t) defined by V(t) = (8¢/3t)|x_0. This case is referred to as

the "current-driven case."

|
|
|
|
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B. Perturbation Solutions

a) Analytic solutions valid for small nonlinearities (i.e., small
values of k, corresponding to junction lengths L which are small compared

to AJ) were obtained by perturbation methods in both the voltage and the

current driven cases. They exhibit the typical '"resonance" behavior of the
I-V-characteristics observed experimentally and Eredicted numerically ([14].

b) A constructive perturbation procedure, similar to those used in
bifurcation theory and valid in the limit of strong dissipation (o » =),
was developed for the voltage driven case.

(8 Existence, Uniqueness, and Stability Results

If one writes ¢ = ¢0 + ¢, where

2
¢0 = wt - kx + px”

satisfies the formal limit equation A¢0 =0 as « » 0, and where k = ow + He,

p = ow/2, and Y is periodic in t, then in the voltage driven case Y satis-

fies

Ay = sin(¢0 + ¢),

(19)
vl A

x=0 Bxl x=n Ve

The following results were proved in this case:

a) For any o# O there exist (2m/w)-periodic solutions of the problem
(19). Hence, for 0#0, there exist (possibly multiply branched [13])
I-V-characteristics for the Josephson junction.

b) For moderate amounts of dissipation relative to the strength of

the nonlinearity (i.e., moderately large values of o relative to x), the




e

£
3
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periodic solution of (19) is unique and globally asymptotically stable.
Hence solutions with arbitrary initial data tend - exponentially in t -
to ¢ = ¢0 + y with y periodic. For example, if k = é (corresponding to
L/AJ~.9) then 0 2 9/16 is sufficient for uniqueness; similarly, with

K = l/4w2 (corresponding to L/)\J = %) uniqueness is assured for o = .06.
These results validate the perturbation proceduré discussed under IV.B.a

in the limit « - O.
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[a]

(b]

[c]

(d]

[e]

(£]

[g]

(h]

(1]

(3]
(k]

(2]
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